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A multiobjective approach to transonic wing
design by means of genetic algorithms

A. Vicini, D. Quagliarella
CIRA - Centro Italiano Ricerche Aerospaziali

via Maiorise 81043 Capua (CE), Italy

1. Summary On the other hand, because aerodynamic shape de-
sign represents only a part of the overall design of a flying

vehicle, and because the need for an effective multidisci-
In this work a transonic wing design problem is faced by plinary approach to the design task is rising, it is impor-
means of a multiobjective genetic algorithm, and using a tant to identify the difficulties which are typical of multi-
full potential flow model. The applications here presented disciplinary environments. Among these we may mention
regard both planform and wing section optimization. It the necessity to operate at system level, and consequently
is shown how both geometric and aerodynamic constraints managing and interrelating design objectives of different
can be taken into account, and how the multiobjective ap- nature. Moreover, the dimensionality of the design space
proach to optimization can be an effective way to handle may increase to a point where traditional mathematical
conflicting design criteria. An interpolation technique al- programming methods are likely to find severe difficul-
lowing a better approximation of Pareto fronts is described, ties. The design problem may be characterized by a mix
Two possible ways of improving the computational effi- of continuous, discrete and integer design variables, and
ciency of the genetic algorithm, namely a parallel imple- the resulting design space can be non convex or even dis-
mentation of the code and a hybrid optimization approach, jointed. For all these reasons, optimization methods which
are presented. do not rely on the computation of gradients, in particular

evolutionary programming and genetic algorithms, are re-
2. Introduction ceiving a considerable growth of interest[31; in fact, these

strategies are less susceptible to pitfalls of convergence to
local optima, and generally offer a more robust approach

Transonic wing design is a very complex task, even if con- to complex design problems. Indeed, the major weakness
sidered from a purely aerodynamic point of view. In fact, of such methods lies in their poor computational efficiency,
several criteria must be met in the design of any efficient which still prevents their practical use when the evaluation
transport wing, including good drag characteristics, buf- of the cost function is expensive, as happens with three-
fet boundary high enough to permit cruising at design lift dimensional aerodynamic problems and complex flow mod-
coefficients, no pitch-up tendencies near stall, no unsatis- els.
factory off-design performances etc.[11 In this work a multiobjective genetic algorithm[41 is

Recent advances in computational techniques have used for a transonic wing design problem, using a full po-
made it possible to effectively address much more com- tential flow solver as aerodynamic analysis tool. In the
plex design problems than was previously possible, and design examples here presented, the optimization of the
concurrently reduce the design cycle flow time. The rapid wing planform is first addressed through a multiobjective
improvements in the speed of computers have then orig- approach, by taking into account both aerodynamic and
inated a growing development of numerical optimization structural weight considerations; afterwards, the wing sec-
techniques for applications to aerodynamic design. Sev- tions are optimized to improve the aerodynamic perfor-
eral techniques are today available[21, from mature gradient mances by decreasing drag for a specified lift, while con-
based methods to more recent approaches like automatic trolling some geometric characteristics of the airfoils and
differentiation, control theory based methods and genetic the pitching moment coefficient. Two different approaches
algorithms (GAs). It is not possible, generally speaking, for the enhancement of the computational efficiency of the
to state the overall superiority of one method over the oth- procedure are illustrated; the first one is a parallel im-
ers; in fact, there are several characteristics that must be plementation of the code, which exploits the favourable
considered, and that may assume different importance de- structure of the genetic algorithm, while the second one is
pending on the specific problem at hand. Among these a hybrid approach obtained by including a gradient based
characteristics we may mention: 1) the generality of the optimization routine among the set of operators of the GA.
formulation, i.e. the possibility to rapidly set up different
optimization problems, including also the use of different
analysis tools; 2) robustness, intended as the capability to
find global optima and reduce the need of human interac-
tion and expertise; 3) the possibility to deal with multiple
design objectives and constraints; 4) computational effi-
ciency, for a practical use of the design approach.

Paper presented at the RTO AVT Symposium on "Aerodynamic Design and Optimisation of Flight Vehicles in a
Concurrent Multi-Disciplinary Environment", held in Ottawa, Canada, 18-21 October 1999, and published in RTO MP-35.
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3. The Genetic Algorithm lutions are obtained, each one meeting the requirements
of the problem at different levels of compromise. Hence,
the characterizing feature of a multiobjective GA is the

Genetic algorithms belong to the class of evolutionary introduction of the domination criteria in the method used
strategies, which common feature is the attempt to emulate for individuals selection. In this work, this is accomplished
the mechanisms of biological evolution. In their original through a random-walk operator: the current population
formulation[51, a set of possible solutions to the problem is distributed over a toroidal landscape, a starting point
at hand (population) are coded into bit strings (chromo- is chosen at random, and the parents are selected as the
somes); a number of operators are then used for the trans- locally non dominated individuals met in two subsequent
formation and improvement of these solutions by evolving walks, of a given number of steps, from that starting point;

through subsequent generations[61. The first component of if more non dominated individuals are met, the first one
a GA is therefore a scheme that allows for a coded repre- encountered is selected.
sentation of possible solutions; as stated above, a bit string In some of the applications here illustrated, an inter-
codification is usually adopted, by representing each design polation technique has been used to improve the quality
variable through a fixed length binary number, and linking Pareto front; this technique consists in what follows:
together all the coded variables in a single string. Then,
there must be a criteria for the evaluation of the fitness of 1) after each new generation Gi is completed, it is

each individual of the population, which is a measure of merged with the current Pareto front (Pi-1), and

how good the corresponding solutions are, allowing for a the new set of non dominated individuals (updated

ranking of the individuals of the population; this criteria is Pareto front, PN) is extracted and stored;

of course problem dependent. The functions used for the 2) afterwards, all the couples of adjacent individuals

simulation of the biological evolution when applied to the along the front are considered, and, if their distance
chromosome strings must then be devised. A criteria for (measured in the objectives plane) is higher than a
the selection of the pairs of individuals that are going to re- specified percentage of the average distance between

produce must be chosen, such that selection probability is adjacent elements of the Pareto front, a new individ-

higher for individuals characterized by higher fitness. The ual is generated by linear interpolation of their design
parents chosen for reproduction are then mated through variables;
a crossover operator, which allows the recombination of
their chromosomes; finally, the two strings obtained can 3) after their evaluation, all the new individuals thus
undergo a mutation, consisting in a random variation of a generated are merged with the current Pareto front
little portion of the information coded in them. A num- set Pfl, and the set of non dominated individuals Pi
ber of different selection, crossover and mutation operators is extracted.
can be used; though the choice of these operators may have A flow chart of the resulting algorithm is illustrated in
strong influence on the performances of the procedure, for Fig. 1. This procedure has two positive effects: the firsta given optimization problemifl, it doesn't affect the basic Fg .Ti rcdr a w oiieefcs h is
scheme of the algorithm. one is the enrichment of the Pareto front at the end of each

Ascheme ofrhedy stalith. pgeneration, as many of the elements obtained through in-
As already stated, a peculiar feature offered by GAs is terpolation belong to the non dominated set; the second

their capability to face multiobjective optimization. When advantage is the exploitation of the first one, and it is ob-
several design goals need to be achieved in an optimiza- tained when an elitist strategy is adopted by selecting some
tion problem, these are usually combined together so that of the individuals in the reproduction phase from the cur-

a single scalar objective function is obtained. In this way, rent Pareto front. The combination of these two effects
the problem becomes amenable to all classical optimiza- allows to improve the approximation of the Pareto front
tion algorithms. The drawback of this approach is that with more and better distributed individuals.

the solution of the problem is strongly dependent on the
(arbitrary) choice of the relative weights assigned to the
objectives; moreover, if the objectives to be minimized are 4. Hybrid GA
of different nature, as happens for example when multidis-
ciplinary optimization problems are faced, it is difficult to
understand how to interrelate them properly. Coupling a genetic algorithm with a different optimization

It can be convenient to follow a different approach, technique can be an effective way to overcome its lack of ef-
by classifying all potential solutions to the multiobjective ficiency while preserving its favourable features. Of course,
optimization problem into dominated and non dominated many different strategies to hybridize the GA can be real-
(Pareto optimal) solutions. One solution is not dominated ized; the ideal approach is to combine the best features of
if there is no other solution which is better with respect both methods, so as to provide results better than those
to all design objectives. The Pareto front is the set of all obtainable using either of the two techniques.
the non dominated solutions; it follows from the definition A simple GA may by itself be considered as the
that, if a solution belongs to the Pareto Front, it is not pos- combination of two different search techniques, namely
sible to improve one of the objectives without deteriorating crossover and mutation, that are characterized by differ-
some of the others. ent behaviours. Crossover is a powerful tool to search the

By virtue of their structure, GAs are capable of fac- design space and single out the region where the global op-
ing multiobjective design problems in a more direct way; tima lie, but it lacks the capability of effectively refine the
in fact, by selecting individuals according to the domina- sub-optimal solutions found. On the other hand, mutation

tion criteria instead of on the basis of a single fitness value, has a more local effect, since the modifications it produces
the set of Pareto optimal solutions can be closely approx- are generally smaller in the coded parameter space. Hence,
imated. In this way, a number of possible alternative so- mutation has two important roles in simple GAs, i.e. to
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provide the capability to effectively refine sub-optimal so- where cp and c() are the current and target pressure dis-
lutions, and to re-introduce in the population the alleles tributions, respectively, and S is the current airfoil con-
lost by the repeated application of crossover, maintaining tour; the fitness is then obtained as f = 1/obj2 . A full
population diversity. However, there is a broad class of potential transonic flow solver, with non-conservative for-
problems, namely the ones where the fitness function is dif- mulation, has been used to calculate the flow field. The
ferentiable, for which gradient based techniques are much airfoil geometry is represented by means of two 5 th order
more efficient to locally improve a given solution. This sug- B-spline curves, for the upper and lower parts. The co-
gests the introduction of a gradient based routine among ordinates of the control points of the B-spline constitute
the set of operators of the GA; mutation is then prevalently the design variables;' 71 7 control points are used both for
left with the role of keeping the diversity among population the upper and lower surfaces of the airfoil, including those
elements at an optimum level, fixed at the leading and trailing edges, for a total of 18 de-

The genetic algorithm developed adopts a bit string sign variables (the first control points at the leading edge
codification of the design variables; anyway, this does not can move only in direction y). The problem here presented
prevent the use of operators requiring real number list en- consists in the reconstruction of the CAST-10 airfoil[81 at
coding, such as extended intermediate crossover and word M = 0.765, a = 0. This problem has been solved using a
level mutation.t41 In these cases the binary string is de- NACA 0012 as initial guess, which can be considered an
coded into a real number list, the operator is applied and absolutely generic starting point.
the set of modified variables is encoded back into a bit The design variables have been encoded using 8 bit
string. This scheme allows the use of a free mix of differ- strings (giving a chromosome length of 144 bits), and a
ent type of operators. 50 individuals population evolved for 100 generations.A 3-

A routine performing a gradient based optimization step random walk was used for individuals selection, with
(with a conjugate gradients technique) has then been in- one-point crossover (pc = 1) and word level mutation
cluded as a GA operator, and called "hill climbing opera- (pm = 0.02). The hybrid strategies have been activated
tor" (HCO). This operator is used as follows: through the so as to select on average only one individual every other
application of the selection, crossover and mutation oper- generation, and carry out 2 gradient iterations Nit = 2,
ators, an intermediate generation is created from the cur- q = 1) Hence, to consider the same total number of ob-
rent one; afterwards, if the hybrid option is activated, some jective function evaluations, the hybrid strategies must be
individuals may be selected and fed into the hill climbing judged approximately at generation 70. Fig. 3 illustrates
operator to be improved, and then introduced into the new the convergence histories, each one averaged over 10 succes-
generation, as sketched in Fig. 1. Regarding the choice of sive trials characterized by different starting populations,
the elements to be fed into the gradient operator, in the obtained with the GA and with the corresponding hybrid
case of single objective optimization three different strate- strategies. The convergence history obtained by the appli-
gies are possible: cation of the gradient based method by itself is also shown

1. only the best fit individual of the current generation in the same figure; in this case, of course, there are no
is chosen; generations of individuals, but the convergence history is

reported in such a way that the number of required objec-
2. a number of elements determined by an assigned prob- tive function evaluations can be obtained from the same

ability is picked using the selection operator; scale (1 generation = 50 evaluations). Besides, it must be

3. a number of elements determined by an assigned prob- noted that a restart procedure had to be used in this case
ability is picked in a purely random fashion. to take the solution out of a local minimum where it got

stuck after a few iterations.
Of course, these strategies are characterized different levels
of selection pressure, decreasing from strategy #1 to strat- be sen, for a given GA, brdaon isw
egy #3; the relative performance will therefore depend on beneficial, meaning that a better result can be found with
the optimization problem. The above described scheme the same amount of computations, or that the same result
can be naturally extended for multiobjective optimization: can be obtained with a substantial reduction of compu-
in this case, strategy #1 becomes the (random) selection of tation needed (ranging in this case from 50 to 75%). In
a number of elements determined by an assigned probabil- particular, strategy #1, when the hill climbing operator
ity from the current set of Pareto optimal solutions, while is applied only to the best fit individuals, appear as the
strategies #2 and #3 remain the same. Of course, the hill less effective, probably due to an excessive selection pres-
climbing operator is by its nature capable of dealing only sure. At the same time, the behaviour of the gradient based

with scalar objective functions; thus, when multiobjective method is considerably improved from the point of view of

problems are faced, the objective function fed into the HCO the robustness.
is obtained through a weighted linear combination of the Another important characteristic that needs to be con-
n problem objectives, i.e. as obj = a objil + (1 - a) obj 2  sidered is the statistical dispersion of the results obtained
in the case of n = 2. The weighting factor a can be cho- starting from different initial populations; in fact, if it is
sen at random or assigned explicitly to favour one of the correct to judge the convergence characteristics of a given
objectives. GA by averaging the results of a number of runs, from an

An airfoil inverse design problem is used to illustrate application-oriented point of view it is more important for
the behaviour of the hybrid procedure. In this case, the ob- the algorithm to guarantee satisfactory convergence per-
jective function to be minimized, for a given Mach number formances even on a single run basis. Fig. 4 shows all the
and angle of attack, is computed by: values of the objective function obtained at the end of each

of the 10 different runs, for each one of the algorithms used;

Obj=10 f (t) 2 it can be observed how the scatter of the results providedS c M-c) ds (1) by the basic GA is much higher than that obtained using
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the corresponding hybrid algorithms. Fortunately, this is not the case for the kind of application
considered so that the efficiency decay can be neglected.

5. Parallel GA However it is not difficult to modify the master so that it
can assign a new task to a child as soon as this has com-
pleted the previous one.

The structure of GAs naturally adapts to the use of par-

allel computing, allowing to obtain remarkable efficiency
improvements. When a population of individuals needs to 6. Applications to wing design

be evaluated, it can be divided into a number of subpopu-
lations which are sent to different processors; in this way, 6.1. Wing geometry parametrization
it is possible to evaluate the whole population in the same

time required by a single analysis, if a sufficient number
of processors is available. It is then also possible to take The parametrization of the wing geometry adopted for this
advantage by the splitting of the population, by using par- work includes the possibilities to modify both the wing

ticular techniques. It has been shown for exampleA9 1 that, planform and the shape of the sections. For the sake of
for some optimization problems, it can be convenient to let simplicity, in the application that will be illustrated the
the different subpopulations evolve separately, with migra- wing planform has been kept trapezoidal, so that all geo-

tions between subpopulations allowed only to a controlled metric characteristics vary linearly from the root section to
degree, and following particular strategies. Besides, it can the tip. In this case, a total of 6 design variables may be

be noted that, although this approach can be easily and used: 4 of these act directly on the wing planform, namely
naturally implemented on parallel computers, it is not ex- the taper ratio A, the sweep angle at 25% of the chord

clusive domain of such kind of machines. A, the aspect ratio AR and the twist angle 0; moreover,

In this paper only a description of the parallel GA will the (percent) thickness at the wing root and tip have also

be given. The individuals of each new generation are evalu- been included among the design parameters. The geom-
ated in a single loop, that follows the recombination phase etry modifications are made in such a way that the wing
and that can be carried out in parallel. The parallel pro- surface is kept constant, so that the average wing loading

gramming model adopted relies on shared memory multi- is not changed during optimization.
processing and the parallelism is implemented at the pro- The wing geometry is assigned through a number of
cess level. The parallel machine adopted is a SGI POWER spanwise "control" sections, which shape can be modi-

CHALLENGE system with 16 R-10000 processors. The fled in the optimization loop; intermediate sections are ob-
parallel code has been implemented using the lightweight tained by linear interpolation. The airfoil shape for each
UNIX process primitives available on this machine[10 1. control section has been represented as a linear combina-

The software is organized following the master-slave tion of the initial shape and a prescribed number of mod-
paradigm. In the initialization phase that precedes the ification functions; the characteristic of these modification
first execution of the evaluation loop, the master process functions is that they are obtained as the difference be-

creates a pool containing a number of processes equal to tween the initial airfoil shape and the shape of existing
the maximum number of processors available for the com- airfoils chosen from an available database, as follows:
putation (NPROC). The child processes created are imme-
diately put in a wait state, in which they remain until they N

receive a "go ahead" signal from the master to start the y(x) = yo(x) + wi [yi(x) - y(x)] (2)

computation. This architecture has been chosen to avoid i=

the inefficiency of creating a child process every time a where yo is the initial airfoil shape, yi is the geometry
computation is needed and killing it at the end. of the i - th airfoil of the database and wi is the design

When the master process enters the evaluation loop, it variable associated with it. In this way, the design variable
splits the population in subsets of maximum NPROC ele- associated with each of these modification functions has an
ments and then, for each subset, it copies the data relevant effect on the whole airfoil shape.

to a single computation in a shared memory area that is
accessed by one of the child processes; afterwards, a signal 6.2. Wing planform design

is sent to the child, through a standard POSIX semaphore,
so that the computation can begin. When the child ter-
minates its computation, it copies the results in a memory As anticipated, the design of a transonic wing planform
region accessible to the master, but not over-writable by will first be illustrated; the design has been accomplished
the other children. Thereafter, it sends a completion sig- by minimizing inviscid aerodynamic drag, which combines

nal to the master (using another POSIX semaphore). The induced and wave drag, and structural weight, at a given
master waits for the completion of all child processes in Mach number M = 0.84 and lift coefficient CL = 0.3. The

a synchronization point. When this happens, the master starting geometry chosen is the ONERA M6 wing[Ill; this
collects the results and starts with the next subset of pop- wing has an aspect ratio AR=3.8, a leading edge sweep A =
ulation elements. The child processes are terminated at 300, a taper ratio A = 0.562, and is untwisted. The shape
the very end of the program, when all the evaluation loops of the airfoil is symmetrical, with a maximum thickness of
related to each generation have been completed. about 9.8 % chord. A total of 5 design variables have been

It can be observed that this architecture is efficient only used; in Table 1 the initial values of the design parameters
when each sub-process has an even computational charge. are reported together with the prescribed allowable ranges.
If this does not apply, the computation process can loose The thickness at the wing tip has been fixed at the original
efficiency because the master has to wait at the synchro- value t/c It= 9.8 %. For all the cases that will be described,
nization point for the completion of the slowest process. the constraint on the lift coefficient has been satisfied by



22-5

using the angle of attack as a free parameter, and letting formulation of these design problems is summarized in Ta-
the flow solver adjust it to meet the desired lift value. ble 3.

The wing twist is distributed symmetrically between
the root and the tip, so that a twist angle 0 corresponds
to an increase of local incidence of 0/2 at the tip, and a
decrease of 0/2 at the root. The wing weight is computed
using the algebraic equation of Ref. 12; this equation com-
bines analytical and empirical (statistical) methods, and The results obtained for the optimization problems #1 and
shows design sensitivity and prediction accuracy that make #2 of Table 2 are here illustrated. The objective function

to minimize was CD/cL (to account for small variations ofit possible to use it with success for preliminary design. the lift coefficient around the design value), with the fitness
As can be seen from Table 2, individuals selection has obtained as f = 1/obj 2. The constraint on the maximum

been carried out through a 2 step random walk, with one- thickness of the wing sections, so as to maintain it at the
point crossover (pc = 1) and bit mutation (pmo = 0.1), same value of the original geometry, is imposed by scaling
and a population of 16 individuals was let evolve for 10 the sections to the desired thickness after each geometry
generations. modification. Finally, the constraint on the trailing edge

The Pateto front obtained using the Pareto interpola- angle has been imposed as a filter, by assigning a very high
tion technique previously described is illustrated in Fig. 5 value to the objective function of those geometries which
(where Wo and CDo are the values of the original M6 wing), violate it, and skipping the aerodynamic analysis.
together with the planformn of a few wings corresponding The wing has been assigned using 4 spanwise sections,
to the indicated positions along the front; the front is pop-
ulated by 123 individuals. In the same picture also the a tions b =,.,6ad 1.0, an the opti-
Pareto front computed without the described interpolation mization has been carried out beginning at the root and
technique is illustrated. In this case, 20 generations have progressing to the tip in 4 subsequent cycles: in the first
been carried out, so that the two cases are compared ap- -one, the modification to the airfoil shape was maintained
proximately for the same total number of objective func- constant in the spanwise direction; in the second cycle, the
tion evaluations; it can be seen how, in the latter case, a section at 1- = 0 was frozen, and the wing was modified

much coarser representation of the Pareto front is obtained from the section at 7 = 0.33 to the tip; in the third and

(43 individuals), fourth cycles, the same was done considering the remaining

In Fig. 6 the execution times of the parallel genetic al- sections. A total of 12 design variables have been used for

gorithm are compared with those of the scalar version. The the wing sections modification.

comparison is made running for 10 generations the same The parameters used for the GA are reported in Ta-

wing planform optimization problem described above. The ble 2. As can be seen, selection was carried out using a 2

speed-up obtained is generally very good, being very close step random-walk, crossover was the extended intermedi-

to the number of available processors. It should be ob- ate recombination with probability 1, mutation was carried

served that the scalar version is faster than the parallel one out at word level with probability 0.05, and the population

when only one slave processor is activated; this behavior is size was 32.

due to synchronization and context switching overheads. As previously stated the described optimization run

In Fig. 7 the values of the design parameters of the solu- was first carried out considering an untwisted wing geom-

tions belonging to the Pareto front are shown as a function etry; afterwards, a second optimization run with the same

of aerodynamic drag. It is interesting to observe how the characteristics has been carried out, adding also the twist

variation of each design parameter along the front is far angle among the design variables. The twist was supposed

from being linear; in particular, "peaks" of some of the de- to vary linearly from root to tip, so there was one extra

sign variables can be found in correspondence of "valleys" design variable for it. Figure 8 illustrates the convergence

of others. The distributions are nevertheless piecewise lin- histories obtained for the untwisted and twisted wings; as

ear, which explains why also a linear interpolation between can be seen, 10 generations were used for the first modifica-

two elements on the Pareto front is likely to belong, in turn, tion cycle, and 5 for the subsequent ones. A total number

to the Pareto front. of (approximately) 800 aerodynamic analyses were thus re-
quired. In Table 4 the aerodynamic coefficients of the orig-
inal and modified wings at the design point are reported,

6.3. Wing section optimization including the values obtained at the end of the first opti-
mization cycle; also the value of the twist angle 0 is showed

The design problem here presented consists in the mini- in the table. It can be seen that, in both the twisted and
mization of (inviscid) drag for the ONERA M6 wing, at untwisted cases, most part of the gain in aerodynamic effi-
the design point M = 0.84, CL = 0.3. The wing plan- ciency is obtained in the first optimization cycle, i.e. for a
form shape and the maximum thickness of the wing sec- spanwise constant wing section. For the untwisted geome-
tions have been kept constant in the optimization process. try the decrease obtained for inviscid drag is ACD = 53.3
This problem is first solved without additional constraints; d.c., which becomes ACD = 58.0 d.c. when twisting is al-
only a geometrical constraint on the minimum allowable lowed. This is essentially due to the reduction of wave drag,
trailing edge angle (-YTE) is used to avoid unfeasible ge- as induced drag is almost constant. Figure 9 illustrates the
ometries. The cases of a twisted and untwisted wing are drag rise curves (at CL = 0.3) of the ONERA M6 and the
considered separately. Afterwards, the same problem is two optimized geometries. In Fig. 10 the shape of the air-
faced introducing the requirement of controlling the value foils of the control stations are illustrated, while Figures 11
of the pitching moment coefficient during the optimization and 12 show the Mach number distribution over the upper
process, and an additional constraint on the leading edge, side of the original and optimized geometries. From these it
radius to avoid undesirable off design performances. The can be observed how the suction peaks at the leading edge
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are noticeably reduced, and the recompression from super- As can be seen, considering that the constraint on the
sonic regime is moved close to the trailing edge, resulting pitching moment doesn't allow the optimizer to change the
in a marked decrease of the pitching moment coefficient. camber of the wing section very much, the final geometries
This situation is more apparent when twisting is allowed, in both cases are characterized by a significant reduction
especially in the outboard part of the wing; in fact, as can of the leading edge radius (see Table 5). This can be an
be seen from Fig. 10, the shape of the airfoils is super- unacceptable modification, as it may lead to unsatisfac-
critical from root to tip, whereas in the untwisted case the tory off design performances, in particular regarding high
supercritical characteristic is lost when moving towards the lift conditions (cMAx of the clean wing). For this reason,

tip. A difference between the two cases is also the leading the optimization procedure as described before has been

edge radius of the wing sections, which is lower when the repeated for the untwisted and twisted cases introducing
wing is twisted as can be expected. an additional constraint on the leading edge radius, so that

this could not be reduced to values lower than 1% of the
local chord. In Fig. 18 the Pareto fronts thus obtained are

6.3.2 Drag minimization with constrained shown, compared to those obtained without leading edge
pitching moment radius constraint. It may be observed how the solutions on

these Pareto fronts are similar to those obtained without
the leading edge radius constraint at the low drag end ofIn the second case considered an additional requirement the fronts, whereas they are characterized by higher drag

regarding the pitching moment coefficient has been intro- thfrnsweeateyrecrceizdbhgerrg
ruegdi tsshowninTable3.The pitching moment cfficro- values in the low pitching moment region of the fronts.
dufiiedt as show in Table 3. g athe phigng momnt cs Considering the same constraint CM > -0.135, the charac-

p i teristics of the solutions that can be extracted from these
CM = -0.1315 (evaluated using the full-potential flow fronts are illustrated in Table 6.
model); thus, the considered constraint cm Ž! -0.135 cor- As can be seen, the drag penalty of these solutions with
responds to a maximum allowable decrease of about 2.5%. respect to the corresponding ones without constraints on
A multiobjective approach has been adopted in this case, the leading edge radius is approximately 6.9 drag counts for
with obji = CD/CL, obj 2 = (CM - CM)

2 . The value the untwisted case, and 6.5 in the twisted one. In Fig. 19
EM = -0.130 has been used; in this way, the solutions the drag rise curves at the design lift coefficient of the op-
on the final Pareto front will be characterized by pitching timized wings with and without the constraint on leading
moment coefficients in the range from approximately 6M
to a lower value corresponding to the minimum drag solu- edge radius are illustrated.
tions. Like in the optimization previously described, two Fig.s 20 and 21 illustrate the pressure distributions over
separate runs have been carried out by allowing or not the theorign and optimied ings whereas the e ndwing twist to be modified; for the sake of simplicity, in this ing geometries are illustrated in Fig. 22. When the wing

wingtwit t bemodfied fo th sae o simlictyin his is twisted, the position of the shock wave is slightly antic-
case the shape of the wing sections has been kept constant iswted, t position of teshck s l
in the spanwise direction. The same parameters of Table 2 ipated, but its intensity is reduced.
have been used for the GA, except for the population size
which has been increased to 48 elements, and the length 7. Conclusions
of the random walk which has been set to three steps. In
Fig. 13 the solutions belonging to the final Pareto fronts

are illustrated; it must be noted that the solutions are not A multiobjective genetic algorithm has been used for the
reported in the objectives plane, but directly in the Cd - CM optimization of a wing in transonic flow. In the design
plane, which explains why their distribution doesn't look problems that have been described both geometrical and
exactly as a Pareto front. aerodynamic constraints have been taken into considera-

It is now possible to choose a solution with the desired tion. It has been shown in particular how multiobjective
characteristics among those obtained; the aerodynamic co- optimization can be an effective approach when conflicting
efficients of the minimum drag solutions which satisfy the design criteria must be met; in the application described
constraint on pitching moment are reported in Table 5. this approach has been used to devise an optimum plan-
Fig. 14 shows the drag rise curves at CL = 0.3 of these wings form shape taking into account both aerodynamic drag and
compared to the original wing. The twisted wing, though structural weight, and to control the value of the pitch-
characterized by lower drag at the design Mach number, ing moment while minimizing aerodynamic drag. A full-
shows a higher drag at lower Mach numbers (drag creep) potential flow solver has been used as analysis tool; com-
respect to the untwisted wing. parison of the results obtained with this flow solver with

It can be seen that, in the case of the untwisted solu- the corresponding ones obtained through Euler and Navier-
tion, the decrease in aerodynamic drag is approximately 45 Stokes solvers show that the full-potential model may be
drag counts, with the pitching moment coefficient within considered adequate for transonic cruise conditions, when
the acceptable value. On the other hand, with the twisted viscous effects axe not very important[ 141. Simple semi-
solution a decrease in aerodynamic drag of approximately empirical criteria, like constraints on the maximum allow-
54 drag counts is obtained, and the pitching moment coef- able Mach number ahead of shocks to avoid flow separa-
ficient is even reduced with respect to the initial value. In tion, may then be sufficient. On the other hand, if design
Fig.s 15 and 16 the pressure distributions over the original problems of industrial relevance need to be faced, it is nec-
and optimized wings are shown. When the wing is allowed essary to take into account complex geometries, and also
to twist. it is possible to see how the intensity of the shock viscous effects are to be included directly in the design loop
is reduced, while its position is to some extent anticipated to obtain more reliable solutions. Though genetic algo-
in the outboard portion of the wing. Finally, In Fig. 17 the rithms are effective and robust design tools, well suited for

modified airfoil shapes are illustrated, multidisciplinary environments, the critical issue still lies in
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the computational effort they require. This makes their ap-
plication unpractical when the fitness evaluation becomes
computationally expensive. Two possible approaches to
the problem have been investigated in this work, consist-
ing in the hybridization of the algorithm to exploit the
favourable features of gradient based search methods, and
in the use of parallel computing.
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design variable initial value allowable range
A 0.562 [ 0.2,0.8

A 30.0 [ 15,36
0 0.0 [ -10, 10

AR 3.8 [ 3.5, 4.2
t/c _ _ % 9.8 [ 8, 14

Table 1 - Design parameters for the wing planform optimization.

Planform optimization Section optimization

Selection Random-Walk, 2 steps Random-Walk, 2 steps

Crossover One-point Extended Intermediate Recombination

PC 1 1
Mutation Bit Word
Pm 0.1 0.05

Pop size 16 32

Table 2 - Parameters for the GA.

Design problem# 11 2 3 1 4 1 5 6

Mach 0.84

CL 0.3

CD minimize
CM free >-0.135
t/c% fixed = 9.8%
twist no Iyes Ino yes no yes

-YTE > 100

L.E. radius free > 1% c

Table 3 - Formulation of the design problems for the M6 section optimization.

Wing # a CL CD CDi CDw CM 0

M6 3.3167 0.3000 0.01369 0.00700 0.00670 -0.13151 0.
1 1.6271 0.3002 0.00887 0.00705 0.00182 -0.22807 0.
2 1.4482 0.3004 0.00836 0.00711 0.00125 -0.23357 0.
3 1.1830 0.3007 0.00843 0.00706 0.00136 -0.22465 -1.40
4 0.8530 0.3028 0.00789 0.00722 0.00067 -0.24006 -3.5'

Table 4 - Aerodynamic coefficients of the optimized wings (design problems 1,2).

Wing 1: untwisted, constant airfoil; wing 2: untwisted, variable airfoil;
wing 3: twisted, constant airfoil; wing 4: twisted, variable airfoil.

Wing # a CL CD CDi CDw cM 0 rLE

M6 3.3167 0.3000 0.01369 0.00700 0.00670 -0.13151 0.0 1.50%
1 3.4558 0.3000 0.00918 0.00700 0.00219 -0.13476 0.0 0.88%
2 2.8994 0.3002 0.00830 0.00731 0.00099 -0.12970 -4.09 0.37%

Table 5 - Aerodynamic coefficients of the optimized wings (design problems 3,4).
Wing 1: untwisted; wing 2: twisted.

Wing # a CL CD CDi CDw cM 0 rLE

M6 3.3167 0.3000 0.01369 0.00700 0.00670 -0.13151 0.00 1.50%
1 3.3823 0.3000 0.00987 0.00700 0.00288 -0.13475 0.00 1.14%
2 2.6742 0.3000 0.00895 0.00748 0.00147 -0.13237 -5.88 1.03%

Table 6 - Aerodynamic coefficients of the optimized wings (design problems 5,6).
Wing 1: untwisted; wing 2: twisted.
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Fig. 13 - Pareto fronts obtained Fig. 14 - Drag rise curves for the original and optimized wings
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Fig. 15 - Pressure coefficient distributions on the original and optimized (untwisted) wings
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Fig. 16 - Pressure coefficient distributions on the original and optimized (twisted) wings

Fig. 17 - Shape of the modified airfoils for the untwisted (left) and twisted (right) wings
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Fig. 18 - Pareto fronts obtained Fig. 19 - Drag rise curves for the original and optimized

with and without leading edge radius constraint wings with and without leading edge radius constraint
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Fig. 20 - Pressure coefficient distributions on the original and optimized (untwisted) wings, with i.e. radius constraint
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Fig. 21 - Pressure coefficient distributions on the original and optimized (twisted) wings, with i.e. radius constraint
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Fig. 22 - Shape of the modified airfoils for the untwisted (left) and twisted (right) wing, with l.e. radius constraint


